Animals

- **General Characteristics of Animals**
 - **Multicellular**
 - Cells are arranged in varying levels of organization
 - **Cell** - fundamental unit
 - **Tissue** - groups of cells working together
 - **Organ** - groups of tissues working together
 - **Heterotrophic**
 - Cannot make their own food and therefore must eat autotrophs or other heterotrophs in order to gain nutrients
 - **Require Oxygen**
 - Use aerobic respiration to convert compounds into energy
 - **Reproduction**
 - Animals reproduce sexually, and in many cases, asexually
 - **Motility**
 - Most animals are motile during at least part of the life cycle.
 - **Embryonic Development**
 - The life cycle includes stages of embryonic development
 - Embryonic cells give rise to primary tissue layers
 - **Ectoderm** - outer layer
 - **Endoderm** - inner layer
 - **Mesoderm** - middle layer
 - **Invertebrates vs. Vertebrates**
 - **Vertebrates** have a backbone. Invertebrates do not.
 - **Body symmetry and cephalization**
 - Animals are radial or bilateral in symmetry
 - **Radial symmetry** - body parts arranged regularly around a central axis, like the spokes of a bike wheel.
 - **Bilateral symmetry** - right half and left half are mirror images of each other
 - **Cephalization** - tendency for sensory structures to be located in a head region
 - Associated with bilateral symmetry
 - Implies a certain level of behavioral ability
 - **Gut** - tubular, sac-like region in which food is digested and absorbed into the internal environment.
 - **Sac-like guts** - one opening acts as mouth and anus.
 - **Tube-like guts** - two openings, complete with mouth and anus.
 - **Body Cavities** - region between the gut cavity and the epidermis (outer skin).
 - **Coelom** - one type of body cavity that has a unique tissue lining called a peritoneum
 - **Coelomate animals** - have a coelom with a peritoneum
 - **Pseudocoelomate animals** - have a pseudocoel, a body cavity w/o peritoneum
 - **Acoelomate animals** - lack a body cavity
- **Segmentation**
 - Segmented animals have a repeating series of body units that may or may not be similar to one another
 - Earth worms- all the segments are very similar
 - Insects- Segments are very different and are even grouped into body regions: head, thorax and abdomen.

- **Animal Evolution**
 - Most likely evolved from protistans
 - Hypothesis 1
 - Animals evolved from ciliates, like *Paramecium* and had multiple nuclei in a one-celled body.
 - As they evolved, the different nuclei became different cells.
 - Hypothesis 2
 - Evolved from spherical colonies of a number of flagellated cells.
 - Certain cells evolved particular functions

- **Vertebrates vs. Invertebrates**
 - Vertebrates have a backbone. Invertebrates do not.
 - 1.95 million species of invertebrates
 - 50,000 species of vertebrates

- **Invertebrate Phyla**
 - Simplest animal
 - *Trichoplax adhaerens* only known placozoan (‘plate’-‘animal’)
 - Consists of several thousand cells arranged in two layers.
 - Has no symmetry and no mouth
 - Slides along the sea floor and briefly humps up when it gets to food, which it digests externally absorbs food into its cells.
 - Porifera- The Sponges
 - Lack symmetry, tissues and organs
 - Organization is at the cellular level.
 - Mostly marine, though some live in freshwater.
 - Body is stiffened by silica or calcium carbonate spicules
 - Filter feeders
 - Water flows into the sponge body through many microscopic pres and chambers by way of beating collar cells, which have little ‘collars’ that trap food.
 - Reproduction
 - Sexual
 - Release sperm into the water and retain eggs until after fertilization
 - Asexual
 - Somatic embryogenesis- a whole new sponge can grow from fragmented bits of another.
 - Cnidaria- Sea anemones, corals, hydroids and jellyfish
 - Mostly marine, though some are freshwater
 - Radially symmetric
- Cells are arranged into tissue layers
- Feed by using nematocysts - poisonous, stinging cells that are shot out when touched
- Sac-like gut with one opening
- Common body forms are the polyp and medusa
 - Medusae float - think of a jellyfish
 - Polyps attach themselves to the bottom
- Each lining in the body has an epithelium, a tissue having a free surface that faces the environment of some type of fluid inside the body
- They have nerve cells within the epithelia that send signals to the contractile cells that cause the body to move
- Mesoglea - layer of gelatinous secreted material that acts as a gelatinous, hydrostatic skeleton.
 - Hydrostatic skeleton - volume of the body remains the same when contracted and therefore the shape changes.
- **Ctenophora** - Comb Jellies
 - Used to be part of the Cnidaria
 - Instead of using nematocysts, the use coloblasts, which are sticky cells
 - Propel by using cilia, not contracting their bells.
- **Platyhelmenthes** - The Flaworms
 - Bilaterally symmetric
 - Cephalized
 - Have simple organ systems with a sac-like gut
 - Hermaphrodites - both male and female simultaneously
 - Turbellarians
 - Mostly marine
 - Ex: Planaria
 - Reproduce asexually through transverse fission
 - Cestoda
 - Tapeworms
 - Parasitize the intestines of vertebrates
 - Attach by means of a scolex, a structure with suckers, hooks or both
- **Nemertea** - The Ribbon Worms
 - Bilateral
 - Acoelomate
 - Soft-bodied and elongated
 - Mostly marine
 - They have a complete gut, circulatory system and separation of the sexes.
 - Have a proboscis, which is a tubular, prey-piercing, venom-delivering device.
- **Nematoda** - The round Worms
 - Pseudocoelomate
- Bilaterally symmetric
- Covered by a touch cuticle outer covering.
- Simplest animal with a complete digestive system
- Most are free-living, but some are serious parasites
 - Hosts include: humans, cats, dogs, sheep, potatoes, sperm whales and others.

 o **Rotifera** - The Rotifers
 - Bilateral and cephalized
 - Mostly live in freshwater
 - <1mm
 - Have pharynx, esophagus, digestive glands, stomach, intestine and anus
 - Some have ‘eyes’
 - Two ‘toes’ exude substances that attach free-living individuals to substrates at feeding time.
 - Have a crown of cilia on the head that assists in swimming and wafting food toward the mouth.

 - **Coelomate Animals**
 - **Protostomes vs. deuterostomes**
 - **Protostome**
 - In embryos cleavage is oblique to the original body axis
 - First opening to form is the mouth
 - Coelom arises from spaces in the mesoderm
 - Examples
 - Mollusks, annelids and arthropods
 - **Deuterostome**
 - In embryos cleavage is parallel and perpendicular to the original body axis.
 - First opening to form is the anus
 - Coelom arises from the gut wall
 - Examples
 - Echinoderms and Chordates

 o **Mollusca** - Mollusks: Clams, squid, octopus and snails (*molluscus* means soft in latin, referring to their soft bodies)
 - Bilateral, coelomate animals with a complete digestive system
 - Have a mantle, which secretes the calcium carbonate shell found in snails.
 - Most mollusks have a fleshy foot.
 - Many have a radula, a rasping tongue
 - Examples:
 - Chitons:
 - Most ancestral
 - Have 8 plates on their backs
 - Rocky intertidal grazers
 - Bivalves – ‘two’-‘shells’
 - Clams, scallops, oysters and mussels
• Filter feeders with incurrent and excurrent siphons.
• Live buried in sand or wedged between rocks.

• Cephalopods- squid and octopus
 o Have mostly lost their shells, though squid have a remnant piece internally.
 o Very fast and very intelligent
 ▪ Use jet propulsion to move through the water
 ▪ Largest brain-to-body ratio of any mollusk
 • Octopus are smarter than cats.

• Gastropods- ‘Stomach’-‘Foot’: snails and slugs
 o Slugs are snails that have lost their shells
 o Eat with a **radula**
 o Snails have this weird thing, where their intestines have gotten all twisted around because of their shell, and they consequently excrete on their own heads.

• **Annelida**- Means ‘Ringed Forms’- The Segmented Worms, e.g. the earthworm
 ▪ Bilateral symmetry, complete digestive system
 ▪ Hermaphroditic
 ▪ Hydrostatic Skeleton
 ▪ Segmentation has great evolutionary potential
 • Individual parts can undergo modification for specialization of tasks
 • Polychaetes are a great example of this
 o Jaws
 o Tentacles
 o ‘Paddles’
 ▪ Many have bristles on the segments that grip the substrate as the worm pushes its way through.
 ▪ They have a rudimentary brain, with a paired nerve cord
 ▪ System of nephridia, which regulates the composition of internal fluids, much like kidneys.
 ▪ Closed circulatory system

• **Arthropods**- ‘Jointed’-‘feet’
 ▪ Evolutionarily, the most successful of all living organisms
 • Most species, most habitats, exploiting the most different types of food.
 ▪ Bilateral, ceolomates with complete digestive and circulatory systems.
 ▪ Six Important Adaptations
 • Hardened exoskeleton made of chitin
 o Used in defense against predation
 o Evolutionarily, it has been molded into a myriad of different forms. Think of it like nature’s plastic.
- Restricts water loss.
- Arthropods must grow by molting

- Jointed appendages
 - Allows the hardened exoskeleton to move
 - Led to the evolution of things such as antennae, wings, and legs

- Fused and modified segments
 - Ancestral arthropods were similar to annelids
 - The fusing and modification of segments into regions of the head, thorax and abdomen allowed for more morphological diversification.

- Respiratory structures
 - Many aquatic arthropods depend on gills for gas exchange.
 - Land dwellers have tubes that bring oxygen directly to the tissues.

- Specialized sensory structures
 - Intricate eyes and other sensory organs contributed to arthropod success

- Division of Labor
 - The job of surviving is divided amongst different stages of development.
 - Many undergo **metamorphosis**
 - Egg-larva-adult
 - Each stage may be adapted to a specific, and different lifestyle
 - Ex: Caterpillars and moths
 - Dragonfly nymphs and dragonflies

- Major groups of arthropods
 - Chelicerates
 - Marine:
 - Sea spiders, horseshoe crabs, some mites
 - Terrestrial
 - Arachnids
 - Spiders, scorpions, ticks and chiggers
 - Segments fused into a forebody and a hindbody
 - Four pairs of legs, a pair of pedipalps for sensing and a pair of chelicerae that inflict wounds and discharge venom.
 - Hindbody spins out threads for webs and egg cases
 - Open circulatory system
• Crustaceans: called so because they have a flexible, yet hard crust.
 o Mostly marine
 ▪ Shrimp. Crabs, lobster, copepods, barnacles
 o Some terrestrial
 ▪ Millipedes, centipedes, pill bugs
 o Many have 16 or 20 segments
 o In shrimp, crabs and lobsters, the head and thorax are fused into the cephalothorax.

• Insects
 o Head, thorax and abdomen
 o Three pairs of legs and usually two pairs of wings
 o Three part gut
 o Only winged invertebrates
 o Life stages include a nymph and pupal, as well as a larval stage.

 o **Echinodermata** -‘Spiny’ - ‘Skin’: Sea stars, sea urchins, sea cucumbers, sand dollar and brittle stars
 ▪ Number of spines with a rigid calcium carbonate endoskeleton
 ▪ Radially symmetric.
 ▪ No brain, but a decentralized nervous system that responds to information from all directions.
 ▪ Move by using tube feet, which have suckerlike adhesive disks
 ▪ Water vascular system acts as a hydraulically driven musculature
 ▪ Sea stars pry open their prey, insert their stomachs and then digest.